One of the first drivers of this home security system quotes legislation being enacted in many regions of the world specifically in the developing world and countries where there is a large chasm between the classes of population. Most impactful has been a mandate that first-order threat verification must be conducted prior to dispatching emergency services. This was due to a significant increase in the false alarm rates and erroneous deployments of municipal resources (police, fire, EMS). In order to adhere to this mandate, two separate but connected actions were undertaken. First, the system development OEMs added new sensor technology to the hardware itself, and second, the system service providers enhanced the level of remote monitoring by human personnel.
Here is an example of how these actions have manifested themselves: traditional motion sensors were based on a single or dual pixel passive infrared (PIR) sensor element. PIR sensors operate by identifying changes in heat signatures within a field of view. Though quite acceptable for some use cases, PIR sensors are limited to the mere detection or presence of stimuli (humans, pets, vehicles) but they cannot identify the type of source that has been detected. In order to distinguish or classify the detected objects, additional sensor technology must be added to the system. In an effort to address this need and to increase the overall accuracy, reliability, and performance of the entire system, image capture capability has been added to an increasing percentage of security motion sensor nodes.
The PIR sensing element remains present but in this advanced configuration, the PIR acts as a trigger to wake up the image capture subsystem, which then grabs an image frame or two and they are then sent to a remote monitoring station for verification. Upon receipt at the service provider’s operations center, round-the-clock human security employees are tasked with checking the transported images in order to verify the stimuli that tripped the alarm, which presents a threat or alarm condition; only after this verification step has been completed will emergency services be dispatched. As an extension to the functionality of the image capture capability being included at the edge of the network within individual sensor nodes, local processing integration is also now being deployed to enable local threat analysis and verification. This additional layer of intelligence provides reduced decision making latency and enables the data transmission bandwidth to be significantly lower, as mere bits of data (flags, interrupts, and notifications) need to be transmitted rather than bytes of data (multiple image frames).
Another major advance in the in-building security solutions sector has been a large move from wired to wireless interfacing, not only between the individual sensor nodes and the control panel, but also from the entire system deployment to its associated remote monitoring station or operations center. For many decades the sensor to panel connection was made using low voltage serial wiring, most often of the RS-485 variety commonly found in many other building control applications. This hardwired interfacing required significant effort and an increasing level of cost for system installation.
With the advent of very low power and short range wireless technology, a number of manufacturers have extended their hardware system portfolios to include wireless system versions enabling much simpler and easier initial deployments. This shift in turn has reduced implementation time as well as cost, and by extension has opened a significantly larger market size by allowing reasonable retrofit installations rather than the market continuing to be driven by new construction sales as it has in the past. Additionally, in the area of back-end connectivity, the intrusion detection system market, which was once exclusively aligned to a phone line or POTS connection to the remote monitoring station or operations center, has evolved to leverage Wi-Fi/gateway Internet links, as well as terrestrial mobile phone network connections, widening the playing field of deployment options while also eliminating the hard requirement of landline phone connections being present for intrusion detection system installations.